Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Focal plane geometry characterization of the Kepler Mission

Identifieur interne : 000B11 ( Main/Exploration ); précédent : 000B10; suivant : 000B12

Focal plane geometry characterization of the Kepler Mission

Auteurs : Peter Tenenbaum [États-Unis] ; Jon M. Jenkins [États-Unis]

Source :

RBID : Pascal:11-0006803

Descripteurs français

English descriptors

Abstract

The Kepler Mission focal plane contains 42 charge-coupled device (CCD) photodetectors. Each CCD is composed of 2.2 million square pixels, 27 micrometers on a side, arranged in a grid of 2,200 columns by 1,044 rows. The science goals of the Kepler Mission require that the position of each CCD be determined with an accuracy of 0.1 pixels, corresponding to 2.7 micrometers or 0.4 seconds of arc, a level which is not achievable through pre-flight metrology. We describe a technique for determining the CCD positioning using images of the Kepler field of view (FOV) obtained in flight. The technique uses the fitted centroid row and column positions of 400 pre-selected stars on each CCD to obtain empirical polynomials which relate sky coordinates (right ascension and declination) to chip coordinates (row and column). The polynomials are in turn evaluated to produce constraints for a nonlinear model fit which directly determines the model parameters describing the location and orientation of each CCD. The focal plane geometry characterization algorithm is itself embedded in an iterative process which determines the focal plane geometry and the Pixel Response Function for each CCD in a self-consistent manner. In addition to the fully automated calculation, a person-in-the-loop implementation was developed to allow an initial determination of the geometry in the event of large misalignments, achieving a much looser capture tolerance for more modest accuracy and reduced automation.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Focal plane geometry characterization of the Kepler Mission</title>
<author>
<name sortKey="Tenenbaum, Peter" sort="Tenenbaum, Peter" uniqKey="Tenenbaum P" first="Peter" last="Tenenbaum">Peter Tenenbaum</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>SETI Institute/NASA Ames Research Center, M/S 244-30, P.O. Box 1</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jenkins, Jon M" sort="Jenkins, Jon M" uniqKey="Jenkins J" first="Jon M." last="Jenkins">Jon M. Jenkins</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>SETI Institute/NASA Ames Research Center, M/S 244-30, P.O. Box 1</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0006803</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0006803 INIST</idno>
<idno type="RBID">Pascal:11-0006803</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000081</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000164</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000117</idno>
<idno type="wicri:doubleKey">0277-786X:2010:Tenenbaum P:focal:plane:geometry</idno>
<idno type="wicri:Area/Main/Merge">000B16</idno>
<idno type="wicri:Area/Main/Curation">000B11</idno>
<idno type="wicri:Area/Main/Exploration">000B11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Focal plane geometry characterization of the Kepler Mission</title>
<author>
<name sortKey="Tenenbaum, Peter" sort="Tenenbaum, Peter" uniqKey="Tenenbaum P" first="Peter" last="Tenenbaum">Peter Tenenbaum</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>SETI Institute/NASA Ames Research Center, M/S 244-30, P.O. Box 1</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jenkins, Jon M" sort="Jenkins, Jon M" uniqKey="Jenkins J" first="Jon M." last="Jenkins">Jon M. Jenkins</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>SETI Institute/NASA Ames Research Center, M/S 244-30, P.O. Box 1</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Automation</term>
<term>Center of mass</term>
<term>Charge coupled device</term>
<term>Dimensional control</term>
<term>Flight</term>
<term>Focal plane</term>
<term>Grid</term>
<term>Iterative process</term>
<term>Localization</term>
<term>Metrology</term>
<term>Model matching</term>
<term>Modeling</term>
<term>Non linear model</term>
<term>Orientation</term>
<term>Photodetector</term>
<term>Plane geometry</term>
<term>Positioning</term>
<term>Response function</term>
<term>Self consistency</term>
<term>Sky</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Grille</term>
<term>Localisation</term>
<term>Automatisation</term>
<term>Plan focal</term>
<term>Contrôle dimensionnel</term>
<term>Dispositif CCD</term>
<term>Photodétecteur</term>
<term>Vol</term>
<term>Géométrie plane</term>
<term>Métrologie</term>
<term>Positionnement</term>
<term>Centre gravité</term>
<term>Ciel</term>
<term>Modèle non linéaire</term>
<term>Ajustement modèle</term>
<term>Modélisation</term>
<term>Orientation</term>
<term>Fonction réponse</term>
<term>Autocohérence</term>
<term>Processus itératif</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Automatisation</term>
<term>Vol</term>
<term>Métrologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Kepler Mission focal plane contains 42 charge-coupled device (CCD) photodetectors. Each CCD is composed of 2.2 million square pixels, 27 micrometers on a side, arranged in a grid of 2,200 columns by 1,044 rows. The science goals of the Kepler Mission require that the position of each CCD be determined with an accuracy of 0.1 pixels, corresponding to 2.7 micrometers or 0.4 seconds of arc, a level which is not achievable through pre-flight metrology. We describe a technique for determining the CCD positioning using images of the Kepler field of view (FOV) obtained in flight. The technique uses the fitted centroid row and column positions of 400 pre-selected stars on each CCD to obtain empirical polynomials which relate sky coordinates (right ascension and declination) to chip coordinates (row and column). The polynomials are in turn evaluated to produce constraints for a nonlinear model fit which directly determines the model parameters describing the location and orientation of each CCD. The focal plane geometry characterization algorithm is itself embedded in an iterative process which determines the focal plane geometry and the Pixel Response Function for each CCD in a self-consistent manner. In addition to the fully automated calculation, a person-in-the-loop implementation was developed to allow an initial determination of the geometry in the event of large misalignments, achieving a much looser capture tolerance for more modest accuracy and reduced automation.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Tenenbaum, Peter" sort="Tenenbaum, Peter" uniqKey="Tenenbaum P" first="Peter" last="Tenenbaum">Peter Tenenbaum</name>
</region>
<name sortKey="Jenkins, Jon M" sort="Jenkins, Jon M" uniqKey="Jenkins J" first="Jon M." last="Jenkins">Jon M. Jenkins</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B11 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B11 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:11-0006803
   |texte=   Focal plane geometry characterization of the Kepler Mission
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024